A Phase 1, Open-Label Study to Determine the Safety, Tolerability, and Pharmacokinetics of Escalating Doses of LJPC-401 (Synthetic Human Hepcidin) in Patients with Iron Overload

Ashutosh Lal,1 Antonio Piga,2 Vip Viprakasit,3 James Maynard,4 Antonis Kattamis,5 Dan Yaeger,6 Brian Byrnes,6 Lakhmir Chawla,6 George Tidmarsh6

1University of California San Francisco Benioff Children's Hospital, Oakland, CA, USA; 2Università degli Studi di Torino, Turin, Italy; 3Siriraj-Thalassemia Center, Mahidol University, Bangkok, Thailand; 4CTI Clinical Research Center, Cincinnati, OH, USA; 5National and Kapodistrian University of Athens, ‘Aghia Sophia’ Children’s Hospital, Athens, Greece; 6La Jolla Pharmaceutical Company, San Diego, CA, USA
Disclosures and Funding

- V. Viprakasit is a consultant for and receives research grants from La Jolla Pharmaceutical Company, Novartis, Sideris, Ferrokin, Vifor, Celgene, Protagonist, Biorad, Sanofi-Genzyme, SEBIA, Roche, Roche Diagnostics and Agios.
- A. Lal and A. Piga are consultants for and receives research grants from La Jolla Pharmaceutical Company
- D. Yaeger, B. Byrnes, L. Chawla, and G. Tidmarsh are employees of La Jolla Pharmaceutical Company
- Funding: This study was funded by La Jolla Pharmaceutical Company, San Diego, CA
Iron overload is a significant complication in patients with hereditary hemolytic anemias and hereditary hemochromatosis 1-3.

- Can cause damage to the liver, heart, and endocrine glands and may result in death.
- Reduced serum hepcidin levels characterize iron overload.

Endogenous hepcidin regulates dietary iron absorption and tissue distribution 4,5.

- Iron efflux to the bloodstream is restrained by hepcidin.
- As a result, recycled iron remains in macrophages, and dietary iron absorption is inhibited.

• In animal models, increasing hepcidin levels by synthetic hepcidin injection or genetic induction has been shown to improve iron overload1
 – A moderate increase in expression of hepcidin in β-thalassemic mice limited iron overload and improved anemia2
 – Supply of exogenous hepcidin or increased expression of hepcidin ameliorated hemochromatosis and β-thalassemia in mice3,4

• These observations suggest that increasing hepcidin levels may help treat the abnormal iron absorption in individuals with β-thalassemia and related disorders

LJPC-401, a synthetic human hepcidin, is being developed as a therapeutic intervention for iron overload.

Tested in 3 clinical studies to date:
- 2 single-dose studies
 - NHV01 in healthy volunteers (poster presentation PF470)
 - TPP01 in patients at risk for iron overload
- 1 multidose study
 - NHV02 in healthy volunteers
Eligible patients were adults with 1 of the following:
- Transfusion-dependent anemia and hemochromatosis
- Iron chelation therapy in the past 6 months
- Serum ferritin level >1000 μg/L, or hemochromatosis*

*Patients with hemochromatosis that required phlebotomy at least once every 2 months or had received iron chelation therapy in the past 6 months.

ECG, electrocardiogram; SC, subcutaneous; TEAE, treatment-emergent adverse event.
Study Assessments

Safety assessments
- TEAEs
- Physical examinations
- Laboratory evaluations
- Immunogenicity
- Visits/sampling on day 1 predose, day 8, and day 22

PK assessments
- Parameters of baseline-corrected serum LJPC-401 obtained by noncompartmental analysis
- Blood samples collected at predose and 0.5, 2, 4, 8, 24, 48, and 168 hours postdose

PD assessments
- Effects on
 - Serum iron level
 - Transferrin level
 - Transferrin saturation
 - Ferritin level
- Samples collected at screening, day 1 predose, 24, 48, and 168 hours postdose

PD, pharmacodynamics; PK, pharmacokinetics; TEAE, treatment-emergent adverse event.
Patient Baseline Characteristics

<table>
<thead>
<tr>
<th>Parameter, n (%)</th>
<th>1 mg (n = 3)</th>
<th>5 mg (n = 3)</th>
<th>10 mg (n = 3)</th>
<th>20 mg (n = 6)</th>
<th>30 mg (n = 3)</th>
<th>Total (N = 18)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><65 years</td>
<td>3 (100)</td>
<td>1 (33.3)</td>
<td>3 (100)</td>
<td>6 (100)</td>
<td>3 (100)</td>
<td>16 (88.9)</td>
</tr>
<tr>
<td>≥65 years</td>
<td>0</td>
<td>2 (66.7)</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (11.1)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>2 (66.7)</td>
<td>0</td>
<td>3 (100)</td>
<td>2 (33.3)</td>
<td>1 (33.3)</td>
<td>8 (44.4)</td>
</tr>
<tr>
<td>Female</td>
<td>1 (33.3)</td>
<td>3 (100)</td>
<td>0</td>
<td>4 (66.7)</td>
<td>2 (66.7)</td>
<td>10 (55.6)</td>
</tr>
<tr>
<td>Iron overload disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemochromatosis</td>
<td>1 (33.3)</td>
<td>3 (100)</td>
<td>3 (100)</td>
<td>3 (50.0)</td>
<td>1 (33.3)</td>
<td>11 (61.1)</td>
</tr>
<tr>
<td>BL serum ferritin, mean (SD), 248 (592) ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sickle cell disease</td>
<td>2 (66.7)</td>
<td>0</td>
<td>0</td>
<td>1 (16.7)</td>
<td>1 (33.3)</td>
<td>4 (22.2)</td>
</tr>
<tr>
<td>BL serum ferritin, mean (SD), 10151 (7375) ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TD β-Thalassemia</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2 (33.3)</td>
<td>1 (33.3)</td>
<td>3 (16.7)</td>
</tr>
<tr>
<td>BL serum ferritin, mean (SD), 1599.7 (2040) ng/mL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

BL, baseline; SD, standard deviation.
Summary of Safety

- No severe (grade ≥3) TEAEs, TEAEs leading to discontinuation, or deaths.
- Individual patient clinical labs reviewed by the study investigator suggested no clinically significant shifts.
Immunogenicity Assay and Results

Positive Control/Assay Format

- Sample or serum spiked with anti-LJPC surrogate antibody
- Streptavidin (conjugated to SulfoTag ()
- Species-specific anti-Ig conjugated to biotin ()
- Hepcidin
- LJPC-401 coat

Detection Control

- Human IgG at 100 ng/mL
- Species-specific anti-Ig conjugated to biotin ()

In 3 clinical trials, which included analysis of a total of 227 samples, all samples were confirmed negative for antibody to LJPC-401.

Signal from positive control demonstrates the assay is properly detecting Ab to hepcidin

Signal generated by the detection control verifies the assay is capable of detecting at least 100 ng/mL of Ab
Mean Baseline-Corrected Serum LJPC-401

- Dose-dependent increase in exposure (except 30 mg)
- Peak concentrations occurred at 2-4 h
- Half-life ~6-13 h

SE, standard error.
Mean Serum Iron Concentration at 8 Hours Postdose

Mean Serum Iron Change from Baseline (SD), %

Dose Response
\(P=0.0478 \)

Note: For analyses excluding the 30-mg dose group, a dose-dependent, statistically significant reduction in serum iron level was observed (\(P=0.008 \) for dose response; not adjusted for multiple comparisons).

SD, standard deviation.
Percent Changes in Iron Parameters in Individual Subjects (20- and 30-mg Dose Groups)

*One outlier patient in the 30-mg group had an exchange transfusion 2 days prior to study entry that may have altered iron homeostasis.

SD, standard deviation; TSAT%, transferrin saturation.
Mean Serum Iron Concentration at 8 Hours Postdose
Post Hoc Analysis, Excluding 1 Subject Outlier

Dose Response

P=0.0102

Mean Serum Iron Change From Baseline (SD), %

LJPC-401 dosing cohorts

1 mg (n=3) 5 mg (n=3) 10 mg (n=3) 20 mg (n=6) 30 mg (n=2)

SD, standard deviation.
Sustained Iron-Lowering Effect With Comparable PK Exposures Between Healthy Subjects and Patients

- PK exposures (AUC and C_{max}) are generally comparable between healthy subjects and patients
- Longer and sustained iron-lowering effect observed in patients returning toward baseline after 1 week
- PD effect likely due to difference in iron hemostasis and regulation between the 2 populations

AUC, Area under the curve; C_{max}, maximum drug concentration.
Improved Hepcidin Production

- Human hepcidin is difficult to manufacture, with challenges around stability and aggregate formation.
- The original methods for synthesis of hepcidin resulted in ~15% higher molecular weight hepcidin aggregate that was prone to further aggregation under in-use conditions.
- The updated proprietary process for producing hepcidin results in <1% aggregate that is stable under in-use conditions.

HPLC Trace

Red: Original process
Black: Improved process

High-order aggregate

HPLC, high-performance liquid chromatography.
A new improved formulation increased subcutaneous bioavailability (AUC and C_{max}) up to 3-fold.
Improved Formulation—Enhanced Iron-Lowering Effect

Enhanced bioavailability resulted in greater iron reduction at the same dose.
Conclusions

- LJPC-401 was well tolerated at doses between 1 mg and 30 mg, with the maximum iron-lowering effect observed at 20 mg

- LJPC-401 showed significant decreases in serum iron levels compared with baseline, which were sustained in most patients for up to 8 days

- In comparison to healthy adults, in whom LJPC-401 caused a decrease in serum iron levels that returned to baseline levels within 48 hours, the iron-lowering effect in iron overload patients was more sustained

1. Yaeger D et al. Presented at the 23rd Congress of the European Hematology Association; June 14-17, 2018; Stockholm, Sweden; poster PF470.
Conclusions (cont’d)

- New formulation has improved PK exposure and PD effect with no corresponding increase of injection site reaction severity or duration

- Additional studies are ongoing to further explore the iron-regulating effects of LJPC-401 in patients with iron-overload disorders

1. Pivotal study in patients with transfusion-dependent beta thalassemia (HELIOS)
 - 100 patient, 12 mo., parallel group study, evaluating the effects of LJPC-401 on myocardial iron

2. Phase 2 study in patients with hereditary hemochromatosis (HERCULES Study)
 - 60 patient, 4 mo., single-blind, placebo-controlled study evaluating the effects of LJPC-401 on TSAT and phlebotomy requirements